
A Proposed Hybrid Spatial Indexing: QX Tree

Jayanaranjan Dash
School of Computer Engineering
KIIT University, Bhubaneswar,

India

Dipa Patra
School of Computer Engineering
KIIT University, Bhubaneswar,

India

Chittaranjan Pradhan
School of Computer Engineering
KIIT University, Bhubaneswar,

India

Abstract—Out of different spatial indexing structures
available for accessing spatial data, none of them is suitable
for high dimensions. This is because the performance of the
spatial indexing structures become poorer with the increase
in dimension. Thus there is a need for a better spatial
indexing structure for the same. Here we have proposed a
hybrid indexing structure by combining the Quad Tree and X
Tree. We have considered the X Tree over R Tree used in the
previous hybrid indexing structure, QR Tree. This is due to
the better performance of X Tree over the R Tree in case of
highly overlapped data.

Keywords-Spatial indexing, Hybrid spatial indexing, Quad
tree, X tree, R Tree, QR Tree, QX Tree.

I. INTRODUCTION

Spatial index can be defined as the data structure
according to a certain order, which is based on the position
and the shape of spatial objects or a certain spatial relation
exists between spatial objects. Spatial index is a
supplementary measure between the space objects and
space operation algorithm, whose main objective is to
screen and filter the spatial data[1].

The most important requirements for these data
structures are the ability to provide fast access to large
volumes of data and preserve spatial relationships, such as
nesting and neighborhood for indexed objects. Several tree-
like access methods were proposed for spatial objects[2].
Quadtree[3] is one of the first data structures for high
dimensional data, which was developed by Finkel and
Bentley in 1974.

According to H.Samet[4], "A class of hierarchical data
structure whose common property is the recursive
decomposition of space is known as Quadtree”. A Quad
tree is a rooted tree like structure whose internal node has
exactly four children. It is mainly used to partition a space
by recursive subdividing method, which turns the space into
four quadrants. The four quadrants are treated as four child
of the tree labeled as NW,NE, SW and SE. It indicates the
quadrant they represent. Figure 1 gives the overview of
Quadtree.

Spatial index is an important process to improve the
performance of the spatial Database. There are a lot of
indexing methods are proposed like Quad Tree, KD
Tree[8], R Tree[6], X Tree[5] etc. Due to increase in spatial
data and the number of working dimensions, the
performance of above indexing methods decrease
gradually. To solve this problem, researchers started to
propose hybrid spatial indexing techniques by combining
advantages of different spatial indexing techniques.

Figure 1. Structure of Quad Tree

QR Tree[2] is a hybrid indexing method which
combines the properties of both Quad Tree and R Tree to
give a better performance for spatial data present in higher
dimension. In QR Tree, a given space is first divided
according to Quad Tree with a maximum depth d. Then
each individual divided sub space contain their
corresponding R Trees as shown in Figure 2.

Figure 2. Structure of QR Tree in 2D Space

The QR Tree gives a faster searching performance than
both Quad Tree and R Tree at higher dimensions. But the
main demerits of R Tree based indexing is that the
performance becomes poor when data is highly overlapped.
The more increase in dimension, the more possibility of
data overlapping. So, here we propose another hybrid
spatial indexing method which combines the Quad Tree and
X Tree.

The other spatial indexing method is X tree[5], which is
a variant of very popular R tree[6]. The data structure is
based on the B Tree[7] indexing method. The main
disadvantages of R tree based indexing method is the poor
performance with respect to the dimension increment. The
data overlapping directly proportional to increase of
dimension, which has a further negative impact on query

Jayanaranjan Dash et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1737-1739

www.ijcsit.com 1737

processing. For a simple point query, we have to follow a
multiple path in R tree based indexing.

The X tree is a spatial indexing method which support
efficient query processing of data at high dimension. It
supports both point data as well as extended spatial data. X
tree uses the overlapping concept in terms of regions. It
avoids the overlapping as minimum as possible. It also uses
an extended variable size directory nodes called as
supernodes. The X tree uses the available main memory
more efficiently.

X tree is like a hybrid of linear array based directory and
R tree based directory. It is designed in such a way that X
tree automatically organize the directories hierarchical as
possible.

Figure 3. Structure of X Tree

Figure 3 describes the overall structure of X tree. The
data nodes of X tree contain MBR(Minimum Bounded
Region), pointers to the actual data, and the directory nodes
contain MBRs along with pointers to the sub MBR. The X
tree consists of three different types of nodes; i.e.
supernodes, data nodes and the normal directory node.
Supernodes can be defined as large directory having
variable size. The main objective of supernodes is to avoid
splits inside the directory.

II. THE PROPOSED HYBRID SPATIAL INDEXING: QX

TREE

A. Definition

QX tree can be defined as a spatial data structure which
combines the features of Quadtree and the X tree as shown
in Figure 4. The number of X tree can be found out as:

݊ ൌ 	෍ሺ2௞ሻ௜
ௗିଵ

௜ୀ଴

																																						ሺ1ሻ

where, d = depth of quad tree and k = number of
dimension.

Quad tree divide the entire index space (S) into n sub
parts i.e. S0,S1,S2...Sn-1. Each part is a d-level sub space. The
sub spaces are disjoint to each other; i.e. no sub space
overlaps with other subspace at any level.

Each of X tree (Xt0,Xt1 … Xtn-1) associates itself with n
node and n sub spaces of Quad tree. A spatial object P is
belong to Si. That implies:

 P is completely inside Si.

 Si is the smallest subspace to completely contain
P.

Figure 4. Structure of QX Tree

B. Search Algorithm

Let a searching rectangle area named R is given to
search for all spatial data within or on the rectangle R. We
must perform searching operations on X Trees associated
with subspaces which intersect with R. If the sub space
associated with the root node intersects with R and
intersects with the index space of corresponding X tree,
then we search in the X tree.

For every sub node, we determine whether its
corresponding sub space are intersecting with R or not. If
not, then the node and sub tree is the end. If yes, then it
intersects with corresponding X tree index space.

QX_Search(X, R) /*Searching all data in the search area
R in the QX tree rooted at X*/
{

 S: Sub space within X;
 if S is not overlapping with R then return;
 if X.MBR overlap with R then
 X_Search(X.MBR,R); /*X Tree
 Search */
 for each child node of X Do
 QX_Search(X.child,R);

}

C. Insert Algorithm

To insert a data, we should first confirm that which sub
space it belongs to and their corresponding nodes. Then
insert data in corresponding X tree.

QX_Insert (X, obj) /*insert object obj into the QX tree
having root X*/
{

 if X is a leaf node of Quad Tree, Then
X_Insert(X.MBR,obj); /*Calling X tree
Insert Algorithm */

 else
 {
 Found = false; /*determining whether

subspaces contain obj*/
 for every child node of X Do
 S=the sub space associated with
child of X
 if S contain obj entirely then,

Jayanaranjan Dash et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1737-1739

www.ijcsit.com 1738

 {
 found=True;

 QX_Insert(X.child,obj);
 break;
 }
 if not found then X_Insert(X.MBR,obj);
 }

}

D. Delete Algorithm

To delete a data item, we first confirm the subspaces it
belongs to and their corresponding nodes. Then delete the
data from corresponding X tree.

QX_Delete(X, obj) /*Item to be deleted is obj from the QX
tree rooted at X*/
{
if X = leafnode of quad tree then

X_delete(X.MBR,obj); /*Calling the X tree Delete
algorithm*/

 else
 {
 found=false; /*Determine if one of subspace

contain obj */
 for every child node of X DO
 {
 S=the subspace associated with child of X;
 if S contain obj entirely then
 found=True;
 QX_Delete(X.child,obj);
 break;
 }
 if not found then X_Delete(X.MBR,obj);
 }

}

III. CONCLUSION

In this paper, we have analyzed an existing hybrid index
structure named QR tree. But we found that the
performance decreases with the overlapping data in higher
dimension. So we have proposed a new hybrid spatial
indexing method and termed it as QX Tree, which
combines both Quad Tree and X tree. Because X tree gives
better performance for overlapped data as compare to R
Tree. Here we only present the algorithm of the new hybrid
spatial index structure. Further it can be implemented with
suitable programming language and should test its
vulnerability by comparing several other indexing method.

REFERENCES
[1] Guobin Li, Lin Li, “A Hybrid Structure of Spatial Index Based on

Multi-Grid and QR-Tree, International Symposium of Computer
Science and Computational Technology, 2010, pp. 447-450.

[2] Yu-Chen Fu, Zhi-Yong Hu, Wei Guo, Dong-Ru Zhou, “QR-tree: a
Hybrid Spatial Index Structure:, IEEE International Confeence on
Machine Learning and Cybernetics, 2003, Vol. 1, pp. 459-463.

[3] R. A. Finkel, J. L. Bentley, “Quad Trees: A Data Structure for
Retrieval on Composite keys”, Springer Acta Informatica, 1974,
Vol. 4, No. 1, pp. 1-9.

[4] Hanan Samet, “The Quadtree and Related Hierarchical data
Structures”, ACM Computing Surveys, 1984, Vol. 16, No. 2, pp.
187-260.

[5] Stefan Berchtold, Daniel A. keim, Hans-Peter Kriegel, “The X-tree:
An Index Structure for High-Dimensional Data”, ACM International
Conference on Very Large data Bases, 1996, pp. 28-39.

[6] Antonin Guttman, “R-trees: A Dynamic Index Structure for Spatial
Searching”, ACM SIGMOD International Conference on
Management of Data, 1984, Vol. 14, No. 2, pp. 47-57.

[7] Douglas Comer, “Ubiquitous B-Tree”, ACM Computing Surveys,
1979, Vol. 11, No. 2, pp. 121-137.

[8] Jon Louis Bentley, “Multidimensional Binary Search Trees used for
Associative Searching”, ACM Communications, 1975, Vol. 18, No.
9, pp. 509-517.

Jayanaranjan Dash et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1737-1739

www.ijcsit.com 1739

